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o WRF-Chem: widely used nationally and
internationally, development led by ESRL

Main developer groups: ESRL (GSD, CSD, PSD),
Pacific Northwest Laboratory (PNNL), NCAR

Other contributors: NASA, University of Chile, Center
for Weather Forecast and Climate studies (CPTEC in
Brazil), Max Planck Institute (MPI Mainz),....

ESRL develops, collects new developments, provides
tutorials, documentation and user support for a large
number of users nationally and internationally (also
includes Air Force Weather Agency (AFWA), also
evaluates new modules (CSD)

WRF-Chem is a state-of-the-art modeling system
with chemistry and aerosol modules that range from
very simple to very complex, and can be used from
global to local scales
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%  Current Possible Applications
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Aerosols may be the most important
link between weather, air quality,
and global climate change.
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Available Aerosols Modules

PM advection, transport, emissions and
deposition only

Bulk approach (from GOddard Chemistry
Aerosol Radiation and Transport Model,

GOCART)

Run in real time at ESRL for Rapid Refresh, and High-
resolution Rapid Refresh (RR-Chem and HRRR-Chem)

Numerically very efficient

Modal approach

Used at ESRL for air quality forecasts on smaller
experimental domains and for field experiments

Used also for research applications

Sectional approach
Research applications
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Direct and semi-direct effects are caused through the direct
interaction of aerosols with radiation

Direct Interaction with
microphysics
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Indirect effects are caused because of the interaction of aerosols with
cloud microphysics (through Cloud Condensation Nuclei)




Important sources for aerosols:

y Fires and Volcanoes

Both are a threat for health and aviation s &



Tephra-fall deposits (g/m?), Redoubt Volcano
south-central Alaska, explosive 43-minute eruption 1989
December 15, 1989
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fires on weather ~

1) 10-day spin up
2) 2-day simulations
with and without

fires o
GOCART as well as

complex chemistry 84N
setup

Initial and boundary
conditions from (1)
3) Fires initialized using
WF-ABBA, MODIS, as s
well as aerial and
ground observations 52N
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Domain 2, dx=2km, Box averages (180km?) over
fairly dry and very smoky areas at July 3, 21Z
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Chemical data assimilation:
ARW/WRF-Chem and GSI

2 months worth of WRF/Chem runs:
1. New England 2004 to estimate background error covariances and length scales
2. Houston 2006 for evaluation
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Chemical data assimilation:

ARW-WRF/Chem and GSI
Ongoing project:

Develop and deliver operational system for air quality and
weather forecasting and assimilation of weather and aerosol data
for Air Force Weather Agency (Cooperative project ESRL/NCAR)

Assimilation of AOD and surface PM data,
using WRF-Chem and GSI

Rapid Refresh framework (dx=13km for North American Grid)

Also to be used for High Resolution Rapid Refresh (HRRR,
dx=3km over continental US)

Determine effect of chemical data assimilation on meteorological
data assimilation

Currently calculating background error statistics
from RR-Chem
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Future line-up for WRF/Chem, only
current ESRL work

Aerosol interaction with radiation and microphysics

Chemical data assimilation
4dvar, collaboration with U of lowa, U of Colorado, and ESRL/GSD
3dvar and EnsKF

Implementation of ESRL’s chemical data assimilation approach at
NCEP (System will be transferred to NOAA/ARL)

Provide AFWA with operational forecast system (possible
impact on visibility as well as weather forecasts)

More choices for “interactive” parameterizations, shallow
convection (ESRL/GSD), NMM-WRF/Chem will become
available

Implementation of all chemistry modules into FIM
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FIM-Chem: The effect of online chemistry
for weather forecasts
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Example of what is coming: LES simulations of

¥, Aerosol Effects on Cloud Morphology via Drizzle
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